PONTIFfClA UNIVERSIDADE CAT()UCA
DO RIO DE JANEIRO

Matheus Adler Soares Pinto

A Method for Real-Time Generation of
Videoke from Video Streaming

Dissertacao de Mestrado

Dissertation presented to the Programa de Pés—graduacdao em
Informatica, do Departamento de Informatica of PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Informética.

Advisor: Prof. Sérgio Colcher

Rio de Janeiro
September 2023

PONTIFI/CIA UNIVERSIDADE CAT()UCA
DO RIO DE JANEIRO

Matheus Adler Soares Pinto

A Method for Real-Time Generation of
Videoke from Video Streaming

Dissertation presented to the Programa de Pés—graduacdao em
Informatica of PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Informatica. Approved by the
Examination Committee:

Prof. Sérgio Colcher
Advisor
Departamento de Informética — PUC-Rio

Prof. Julio Cesar Duarte
IME

Prof. Antonio José Grandson Busson
BTG Pactual

Rio de Janeiro, September 28th, 2023

All rights reserved.

Matheus Adler Soares Pinto

Graduated in 2021 from the Universidade Estadual do Maran-
hao (UEMA) in Computer Engineering.

Bibliographic data

Pinto, Matheus Adler Soares

A Method for Real-Time Generation of Videoke from
Video Streaming / Matheus Adler Soares Pinto; advisor:
Sérgio Colcher. — 2023.

56 f: il. color. ; 30 cm

Dissertacdo (mestrado) - Pontificia Universidade Catdlica
do Rio de Janeiro, Departamento de Informatica, 2023.

Inclui bibliografia

1. Informéatica — Dissertacdo. 2. Sistemas Multimidia. 3.
Processamento em Tempo Real. 4. Arquitetura de Software.
5. Inteligéncia Artificial. |. Colcher, Sérgio. Il. Pontificia
Universidade Catélica do Rio de Janeiro. Departamento de
Informatica. Ill. Titulo.

CDD: 004

To my parents, my grandparents and my life partner for their unconditional
support and encouragement.

Acknowledgments

Firstly, I would like to express my gratitude to God, the creator of all things

and the source of blessings in my life and in the life of my family.

I am immensely grateful to my advisor, Prof. Sérgio Colcher, for believing in me
and for his fundamental support in the development of this work. I would also
like to express my deep gratitude to Busson, for the exchange of experiences,
advice, and opportunities. Without your guidance and help, this dissertation

would not have been possible.

I thank the members of the examining board who kindly accepted the invita-
tion to collaborate with their expertise in evaluating this study. I also thank the
professors, staff, and colleagues at PUC who shared their time and knowledge

with me.

The Telemidia family deserves my sincere gratitude for their hospitality and

for exchanging experiences over the years in my master’s program.

I would like to thank my girlfriend and life partner, Giulia, for her encourage-

ment, support, patience, and understanding.

I deeply thank my parents, Jony Arrais and Mdnica Soares, who have always
been my greatest motivation, doing everything in their power to help me get to
this point. To my brother, Gabriel Victor, for all his concern seeing me spend
hours in front of the computer. To my brother, Jony Junior, for his concern
and for the exchange of academic experiences he provided me with at this final

moment.

Finally, I am extremely grateful to my grandparents, Hermano José and Maria
de Fatima, who have always provided me with fundamental support, whether

emotional or financial.

This study was financed in part by the Coordenacdo de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Finance Code 001

Abstract

Pinto, Matheus Adler Soares; Colcher, Sérgio (Advisor). A Method
for Real-Time Generation of Videoke from Video Streaming.
Rio de Janeiro, 2023. 56p. Dissertacao de Mestrado — Departamento de
Informatica, Pontificia Universidade Catolica do Rio de Janeiro.

Traditional karaoke systems typically use pre-edited videos, which limits
the creation of videoke experiences. In this dissertation, we propose a new
method for generating videoke in real-time from video streaming sources, called
the videoke Generator. This method combines video and audio processing
techniques to automatically generate videoke and is designed to perform
processing in real-time or near real-time. The main objectives of this study
are to formulate a methodology to process videos in continuous flow and to
generate videoke in real-time while maintaining essential features such as the
suppression of the main voices of the music and the automatic generation
of subtitles highlighting words. The results obtained represent a significant
contribution to the field of real-time multimedia generation. The method was
implemented in a client/server architecture for testing. These contributions
represent a step forward in the field of entertainment and multimedia systems
as they introduce a new methodology for the creation of videoke experiences.
To our knowledge, this is the first work that addresses the development of
a real-time videoke generator that performs automatic synchronization and

highlighting at the word level, based on a literature review.

Keywords
Multimedia Systems; Real-Time Processing; Software Architecture;

Artificial Intelligence.

Resumo

Pinto, Matheus Adler Soares; Colcher, Sérgio. Um Método para Gera-
cdao em Tempo Real de Videoké a partir de Streaming de Video.
Rio de Janeiro, 2023. 56p. Dissertacao de Mestrado — Departamento de
Informatica, Pontificia Universidade Catolica do Rio de Janeiro.

Sistemas tradicionais de karaoké geralmente utilizam videos pré-editados,
o que limita a criacao de experiéncias de videoké. Nesta dissertagao, propomos
um novo método para a geracao de videoké em tempo real a partir de fontes
de streaming de video, chamado Gerador de Videoké. Este método combina
técnicas de processamento de video e audio para gerar automaticamente
videoké e é projetado para realizar o processamento em tempo real ou préximo
a isso. Os principais objetivos deste estudo sdo formular uma metodologia
para processar videos em fluxo continuo e gerar videoké em tempo real,
mantendo caracteristicas essenciais como a supressao das vozes principais da
musica e a geracao automética de legendas destacando palavras. Os resultados
obtidos representam uma contribuicao significativa para o campo da geracao de
multimidia em tempo real. O método foi implementado em uma arquitetura
cliente/servidor para testes. Essas contribui¢oes representam um avango no
campo dos sistemas de entretenimento e multimidia, pois introduzem uma nova
metodologia para a criacao de experiéncias de videoké. Até onde sabemos, este
é o primeiro trabalho que aborda o desenvolvimento de um gerador de videoké
em tempo real que realiza sincronizagao automatica e destaque a nivel de

palavras, com base em uma revisao da literatura.

Palavras-chave
Sistemas Multimidia; Processamento em Tempo Real; Arquitetura de

Software; Inteligéncia Artificial.

Table of contents

1

1.1
1.2
1.3
1.4
1.5

2

2.1
2.2
2.3

3.2

3.3
3.4
3.5

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5

5.1
5.2
5.3

6

7

Introduction
Motivation
Objective
Justification
Methodology
Text Structure

Theoretical Reference
Karaoke: A Form of Musical Entertainment
Audio and Video Processing
Video Streaming

Related Works
A real-time audio-to-audio karaoke generation system for monaural
recordings based on singing voice suppression and key conversion
techniques
Karaoke of Dreams: A multi-modal neural-network generated mu-
sic experience
Singer separation for karaoke content generation
Hybrid Y-Net Architecture for Singing Voice Separation
Discussion of related work

Proposal
Audio Track Extration
Temporal Marking Generation
Chunk Division
Vocal Separation
Subtitle Generation and Synchronization
Videoke Chunk Generation
Real-time processing and buffering

Experiments and Results
Configuration
Experimentation
Results

Conclusion and future work

Bibliography

12
12
13
13
14
16

17
17
18
24

27

28

28
29
30
32

34
36
36
37
38
39
40
40

43
43
44
49

54

55

List of figures

Figure 2.1 Details of the Hybrid Transformer Demucs architecture

(ROUARD; MASSA; DEFOSSEZ, 2023). 20
(a) Transformer Encoder Layer 20
(b) Cross-domain Transformer Encoder of depth 5 20
(c) Hybrid Transformer Demucs 20
Figure 2.2 Overview of the Whisper architecture (RADFORD et al., 2023). 22
Figure 2.3~ Components of an HTTP Live Stream 25
Figure 3.1 Participants singing in the KoD (KWAN; SUN; YUDIT-
SKAYA,). 29
Figure 3.2 System flowchart of singer separation system (CHEN; CHEN;
JANG, 2021). 30
Figure 3.3 Y-Net Architecture (FERNANDO et al., 2023). 31
Figure 4.1 Method for Real-Time Automatic Videoke Generation 35
Figure 4.2 Audio Track Extraction Module 36
Figure 4.3 Temporal Marking Generation Module 36
Figure 4.4 Chunk Division Module 37
Figure 4.5 Vocal Separation Module 38
Figure 4.6 Subtitle Generation and Synchronization Module 39
Figure 4.7 Videoke Chunk Generation Module 40
Figure 5.1 Example of styles in videoke 47

Figure 5.2 Client-Server Architecture for Streaming 49

List of tables

Table 3.1

Elements covered in each work.

33

List of Abreviations

ASR — Automatic Speech Recognition
CNNs — Convolutional Neural Networks
CPU - Central Processing Unit

Demucs — Deep Extractor of Music Sources
DNNs — Deep Neural Networks

FPS — Frames per second

HLS - HTTP Live Streaming

HTML — HyperText Markup Language
HTTP — Hypertext Transfer Protocol

ML — Machine Learning

MM - International Multimedia Conference
NLP — Natural Language Processing

NMF — Non-Negative Matrix Factorization
PCM — Pulse Code Modulation

PTMs — Pre-trained Models

RNNs — Recurrent Neural Networks

SRT — SubRip

1
Introduction

Karaoke, which originated in Japan in 1971, is a form of musical interac-
tion in which participants perform musical compositions without the presence
of the original vocals (HOSOKAWA; MITSUI, 2005). Its consolidation as a
globally widespread form of entertainment continues to this day and is one of
the most important leisure activities both in Japan and worldwide. In 2011,
an experiment proved its popularity, ranking it as the 7th most popular prac-
tice in Japan with 38.4 million participants, directly competing with other
entertainment activities such as watching movies, playing video games, and
listening to music (TACHIBANA et al., 2016).

A variation of this concept, which we will refer to as videoke, includes
additional elements such as video and synchronized subtitles alongside the
corresponding audio, eliminating the original vocal track. The experience
offered by videoke is even more enriching as it allows participants to not only
express the music vocally but also interact with the content visually, which
has significantly boosted its growing popularity.

However, it is essential to point out that the creation of this content,
whether in videoke or karaoke format, is still primarily the responsibility of
specialists such as sound engineers. Generating these tracks in high quality
for musical compositions requires mastery of specialized media manipulation
software, which is a challenge that often exceeds the capabilities of the public
(MEHENDALE et al., 2021). These limitations lead to significant constraints,
such as the availability and variety of easily accessible karaoke and videoke

tracks.

1.1
Motivation

This dissertation arose from the motivation to overcome the limitations
inherent in traditional videoke systems, as described in the previous section. In
an era characterized by the presence of artificial intelligence in various sectors
of society, including the entertainment industry, we have observed a growing
interest in the study and development of techniques related to automatic
karaoke generation. This is evidenced by the research conducted by Patel
(PATEL et al., 2022). This study analyzes recent trends and advances in this
area, highlighting notable examples such as Spleeter, Hybrid Demucs, D3Net,

Open-Unmix, Sams-Net, and others.

Chapter 1. Introduction 13

The formulation of a methodology that significantly contributes to the
advancement and exploration of this emerging topic forms the basis for the
conceptualization of this dissertation. In this context, we present an approach
called Videoke Generator. This method enables the real-time generation of
videoke from video streaming sources. By filling this research gap, the disser-
tation aims to contribute to the current landscape of studies related to artificial

intelligence used to create experiences in the field of musical entertainment.

1.2
Objective

The main focus of this research is to introduce an approach for real-time
generation of videoke from video streaming sources. To achieve this goal, our
proposed method involves the implementation of a methodology consisting of
an interrelated network of modules, each of which performs a specific function
in the generation of videoke in real-time.

In addition to the main objective outlined, this study aims to make addi-
tional contributions. In this context, three specific objectives should be high-
lighted: the implementation of an automatic subtitle synchronization system
with word-level highlighting to improve the user experience; the introduction
of a granularization mechanism in the videoke generation process that enables
real-time or near-real-time application; and the validation of the applicability
of the proposed methodology through the development of a functional proto-
type that will be evaluated.

Therefore, this work aims to advance studies on the topic of videoke
generation by introducing the Videoke Generator. This contributes to the de-
velopment of the field by addressing specific aspects such as the automatic
synchronization of subtitles and the granularization of the process. The pro-
totype resulting from the method provides a tangible tool for practical evalu-
ation that will serve as a guide for future work, thus contributing to the body

of knowledge in the field of automated real-time videoke generation.

1.3
Justification

The relevance of the research proposed in this dissertation is grounded
in two different areas: theoretical and practical.

From a theoretical point of view, the study of real-time videoke genera-
tion from video streaming sources represents an advance in the fields of media
processing and artificial intelligence. This research fills a gap in the literature

and is the first to specifically address this problem. It contributes to the under-

Chapter 1. Introduction 14

standing of the integration of algorithms and techniques aimed at extracting,
manipulating, and synchronizing different modalities of media, such as audio,
video, and subtitles. In addition, the proposal covers the area of automatic gen-
eration of multimedia content in real time, an area with potential applications
in various fields such as entertainment, education, and communication.

On the practical side, the implementation of the proposed Videoke Gen-
erator will have a tangible impact. The ability to generate videoke in real-time
from streaming video sources has the potential to positively impact the way
people interact with musical and audiovisual content. This development can
provide opportunities for enhanced experiences and also serve as a starting
point for future research in the entertainment industry. Furthermore, automat-
ing this process has the potential to reduce the reliance on audio and media
experts to create videokes, democratizing the technology and making it acces-
sible to a wider audience. This approach could drive the production of musical
entertainment content and enable more people to create and share videoke in
a simplified way.

Therefore, the research in question not only helps to advance theoretical
knowledge in the field of media processing and artificial intelligence but also
contributes to the generation of videoke content, creating opportunities for

future work and improvements in this field of study.

1.4
Methodology

This Section describes the methodology used to conduct the proposed
research, covering all phases from problem definition to the evaluation of
results. The methodology was developed to ensure the generalizability and

reproducibility of this study.

1.4.1
Literature Review

In the first phase, the literature on the generation of real-time videoke
from video streaming sources was reviewed. The aim of this review was to
capture the current state of knowledge and identify previous contributions,
approaches used, gaps, and unresolved issues. Various sources of information
were consulted, including academic databases, scientific journals, professional
conferences, and specialized literature. The review was conducted systemati-
cally, using appropriate keywords and selection criteria.

The analysis of the sources enabled the development of a knowledge base

on the topic and provided context for the research. This extensive literature

Chapter 1. Introduction 15

review provided insights that guided the methodology and approach of the
study.

1.4.2
Method Definition

The Videoke Generator method represents the proposed solution in
this research. Based on the knowledge gained from the literature review, a
framework was designed to be followed in all stages of the automatic real-
time videoke generation process. This methodology includes audio and video
processing and manipulation, automatic subtitle synchronization, videoke
generation, and subsequent evaluation of the results.

This phase is important to create a solid methodological framework that
will guide all subsequent steps of the study. The methodology is designed to
ensure a systematic approach at all phases of the process, aiming for efficiency

and reliability of results.

143
Experimentation and Validation

In this phase, practical experiments were carried out according to the
proposed methodology. Different video media sources were selected to simu-
late the transmission for experiments with the developed system. These media
were categorized into groups, each representing a particular style of music. The
categorization was based on the hypothesis that different music styles can in-
fluence the process of videoke generation in different ways, taking into account
characteristics such as rhythm, melody, dynamics, and instrumentation.

To test this hypothesis, an experimental approach was chosen in which
each set of video media representing a musical style was used to generate
videoke with the system. In this way, it was possible to verify whether the
system exhibited significant differences in performance based on the music

style of the video media sources used in the creation of the videoke.

1.4.4
Results Evaluation

The results achieved, such as synchronization, subtitle quality, and
harmonization, were then analyzed and compared between the groups. The
analysis also included a subjective evaluation of satisfaction with the generated
videoke in different musical styles, based on predefined criteria. In addition,
the processing time and the effectiveness of the state-of-the-art models used

as tools in the system were evaluated.

Chapter 1. Introduction 16

1.5
Text Structure

This document follows a structure to present the essential elements of the
research. Chapter 2 introduces basic concepts for a complete understanding of
the proposed method. Chapter 3 reviews and discusses research related to the
problem at hand. Chapter 4 explains the proposal in detail. Chapter 5 presents
the experiments and results. Finally, Chapter 6 concludes the research and

outlines possible directions for future work.

2
Theoretical Reference

This chapter is dedicated to introducing concepts that underpin the un-
derstanding of this study. By establishing a solid foundation of theoretical
knowledge, we aim to provide readers with the necessary tools to fully contex-
tualize and understand the real-time videoke generation method proposed in
this study. In this context, we will cover important concepts related to karaoke,
audio and video processing, music source separation, speech recognition, sub-
title synchronization, embedding elements in videos, video streaming, and the
HTTP Live Streaming (HLS) protocol. Each of these concepts is essential to
the development and understanding of the method and helps to provide a solid
foundation that supports all the work presented in this dissertation. Therefore,
this chapter is fundamental for the reader to understand and evaluate the con-
tribution of this study.

2.1
Karaoke: A Form of Musical Entertainment

Karaoke is a popular form of musical entertainment that gained promi-
nence in the early 2000s (ZHOU; TAROCCO, 2013). In this Section, we will
examine karaoke as a significant cultural manifestation and discuss its origin,
evolution, social and cultural influence, and role in today’s society.

Karaoke has its roots in Japan, where it was invented in the 1970s by
Daisuke Inoue, a Japanese musician. The word karaoke is a combination of
the Japanese words kara (meaning empty) and oke (meaning orchestra). Inoue
developed a system that allowed people to sing popular songs accompanied only
by instrumental recordings, so that everyone could feel like the artist of the
song. This concept quickly spread in Japan and later all over the world. Over
time, karaoke evolved to include a variety of songs in different languages and
musical genres. Karaoke machines were equipped with video screens, animated
lyrics, and scoring systems to evaluate the singers’ performances. Karaoke bars
and special venues where people could meet to sing (LUM, 2012).

Raymond Williams (WILLIAMS, 2020) says that a culture should be
understood as a specific way of life that expresses meanings and values not
only through art and learning, but also through institutions and everyday
behaviors. Based on this definition, cultural analysis involves the study of the
implicit and explicit meanings and values that permeate a particular way of

life and culture. The study of a particular cultural system therefore involves

Chapter 2. Theoretical Reference 18

examining the symbiotic interaction between the human, material, symbolic,
and institutional elements of a society that express that particular way of life.
If we apply this approach to the practice of karaoke singing, we can recognize it
as a cultural manifestation in itself. Karaoke represents a process of interaction
and human practices that shapes certain values, meanings, and social realities
as an integral part of a specific culture—a unique way of life. It plays an
important role in promoting social interaction and communication between
people, and in many cultures, karaoke is a common social activity.

Karaoke also has a significant impact on people’s psychological well-
being. Singing is a form of emotional and artistic expression that releases
endorphins and lowers cortisol levels. This reduces stress and contributes to a
better quality of life, according to a study by scientists from the Department
of Experimental Psychology at the University of Oxford (DUNBAR et al.,
2012). Participating in a karaoke session can provide a sense of achievement
and personal satisfaction, even for those who are not professional singers.
In addition, karaoke offers the opportunity to overcome shyness and social
anxiety, which are very common in today’s society (BUSS et al., 2022).

Currently, karaoke is a popular form of entertainment worldwide. With
the advancement of technology, online karaoke apps and programs have become
more prevalent, allowing people to sing and share their performances with
others. This shows how karaoke has adapted to technological change and
remains relevant in today’s society. This provides scope for research into

artificial intelligence systems for karaoke generation.

2.2
Audio and Video Processing

In this Section, we will look at audio and video processing, highlighting
key definitions and algorithms related to music source separation, speech
recognition, subtitle synchronization, and embedding elements in videos. These
topics are crucial for understanding the real-time videoke generation method

proposed in this study.

2.2.1
Music Source Separation

Music source separation is a technique in audio processing that plays
a crucial role in real-time videoke generation. It refers to the ability to
decompose a music recording into its individual components, such as vocals,
instruments, and other sound sources. This allows the creation of karaoke

tracks, for example, where the artists’ original voices are isolated from the

Chapter 2. Theoretical Reference 19

musical accompaniment (CANO et al., 2018). A well-known model in this area
is Demucs (Deep Extractor of Music Sources), which is used as a tool in this
study.

Demucs (ROUARD; MASSA; DEFOSSEZ, 2023) is a state-of-the-art
solution in the field of music source separation and is known for its ability to
isolate different musical elements in a recording. This includes, for example,
the ability to separate drums, bass, and vocals from the rest of the musical
accompaniment. Its effectiveness is based on a convolutional U-net architecture
inspired by the Wave U-net and optimized for the separation of music sources.

In this work, we have chosen to use the latest version of Demucs, known
as Demucs v4. It introduces the Hybrid Transformer Demucs, a hybrid version
that combines spectrogram processing techniques with waveform separation
using transformer technology. This hybrid approach further enhances the
model’s ability to separate complex music sources. The Hybrid Transformer
Demucs builds on the Hybrid Demucs with internal layers that have been
replaced by a cross-domain transformer encoder.

The Transformer Encoder of the Hybrid Transformer Demucs is equipped
with self-attention mechanisms that allow the model to analyze and understand
the relationships between different parts of the music more deeply. This results
in high performance and makes the model state-of-the-art in music source

separation.

Chapter 2. Theoretical Reference 20

Lgut "
(B,C, Fr, TI)T Eput
Reshape
(B,C, Fr+Ty) (B,C,T2)
mTJJ:
Norm |
Apo0o0
E] 0
* b0 Ay
Ao
E II‘ |1 o .o (B,C,Fr+T))
T 00 A (B,C.FrT) g (B,C,T)
20 Pos 1D Pos y
Self-Attn Enc _ Enc j
Norm
1 !
x
(a) Transformer Encoder Layer (b) Cross-domain Transformer En-

coder of depth 5

/ S

AMM AN AW S AWMU

b ot e

| 1 1 A A A A 2\ 1.1 1 1 A A A ~1
PV Ve P Vg Vg g Ve P g Ve P P Vg g Vg Vg

[ISTFT |—®

I/1024 time steps, 2048 freqg I' time steps
ZDecodders (Cin = 48, Cour = 4-2-2) 7\ TDecoder; (Cin = 48, Cour = 4-2) i
T/1024 time steps, 512 freg I'/4 time steps
] ZDecoders(Cin = 96, Cou = 48) Y TDecodera(Cin = 96, Coue = 48)
[/1024 time steps, 128 freq I'/16 time steps
1 ZDecodery(Cin = 192, Cowe = 96) [| TDecodera{Cin = 192, Cout = 96)
/1024 time steps, 32 freq I' /64 time steps
1 ZDecodery(Cin = 384, Coue = 192) J.“ | TDecodery(Cin = 384, Coue = 192)

T /1024 time steps, 8 freq T /256 tiame stepe

Cross-Domain Transformer Encoder

I| 1024 time steps, 8 fre T /256 time steps .

ZEncoders(Cin = 192, Cous =384) | [TEncoder(Cin =192, Cout = 384)

I/1024 time ste 32 freq I'/64d time steps
ZEncoders (T, = 9, Cowe = 192) 'lL / TEncoders{Cin = 96, Coue = 192)
I/I024 time steps, 128 freg. [/16 time steps
) ZEncodery(Cy,, = 48, Cpyy = 96) Vo TEncoderg(Cry = 48, Cout = 96)
T/1024 time steps, 512 freg T'/4 time steps
ZEncoder: (Cin = 2+ 2, Cout = 48) \ [TEncoder; (Cyy = 2, Copr = 48) {
- /1024 time steps 2048 freg. 1" time steps
| — (s }— MM

(¢) Hybrid Transformer Demucs

Figure 2.1: Details of the Hybrid Transformer Demucs architecture (ROUARD;
MASSA; DEFOSSEZ, 2023).

Chapter 2. Theoretical Reference 21

The architecture of the Hybrid Transformer Demucs consists of three
main elements, which are shown in Figure 2.1. In subfigure 2.1a, we highlight
the presence of the transformer encoder layer, characterized by self-attention
mechanisms and layer scaling, which are essential for information analysis and
processing. In Subfigure 2.1b we have the Cross-domain Transformer Encoder,
designed to handle both spectral and temporal signals simultaneously. This
module contains layers from both the transformer encoder and the cross-
attention encoder, providing a comprehensive approach for the representation
of heterogeneous data. Finally, in the subfigure 2.1c, the figure shows an
overview of the entire architecture in which the dual U-Net encoder/decoder
structure is integrated. This structure is designed to optimize feature extraction
and reconstruction and ensure effective performance when separating sound
sources in a complex musical environment. Each component plays a role in
the Hybrid Transformer Demucs’ overall ability to perform advanced audio
processing tasks.

The Hybrid Transformer Demucs retains the four outermost layers of the
encoder and decoder of the Hybrid Demucs, adding a cross-domain transformer
encoder in between them. This structure is critical to the model’s high
performance in separating complex music sources and enables in-depth analysis
of the relationships between the parts of the music.

Demucs’ ability to effectively separate music sources plays an important
role in creating videoke tracks. In this research, we will explore how Demucs
can be integrated into the real-time videoke generation process at the stage
of removing the original vocals and incorporating into the videoke only the

musical accompaniments.

2.2.2
Speech Recognition

Speech recognition is another well-known technique in audio processing,
playing a fundamental role in the transcription of verbal information contained
in audio recordings. In this Section, we will explore some concepts related to
speech recognition, focusing primarily on the task of audio transcription.

This task involves converting audio signals containing speech into cor-
responding text, and requires approaches capable of handling the variety of
voices, accents, and linguistic contexts present in recordings. A notable model
in this domain is Whisper, a state-of-the-art solution for audio transcription.

Whisper is a sequence-to-sequence transformer model that stands out
as a state-of-the-art solution for audio transcription. This model is trained

on different speech processing tasks, such as multilingual speech recognition,

Chapter 2. Theoretical Reference 22

speech translation, spoken language identification, and speech activity detec-
tion. These tasks are jointly represented as a sequence of tokens to be predicted
by the decoder, allowing a single model to replace multiple stages of a tradi-
tional speech processing pipeline.

Whisper’s multitask training uses a set of special tokens that act as task
specifiers or classification targets. This multifunctional approach contributes to
the generalization and robustness of the model, enabling it to handle a variety
of voices, accents, and linguistic contexts present in audio recordings. Figure

2.2 provides an overview of the architecture proposed in the Whisper paper
(RADFORD et al., 2023).

.
Multitask training data (680k hours) Sequence-to-sequence lsaming o 2] o0 [frsabeo ..
;WEID"“

English transecripticn

-

‘ “Ask mot what your country can do for —" | — v —
D Agk ol what your Country Can 3o for =
T
Any-to-English speech translation) h 5 B
‘ "El rapid — Transiormes ! E —_—
pida Zormo marmdn salta sobire ®
Encoder Blocks | 8 | —— L Transiommer
D The quick broven fox jumps over - B [oroua nwrien | [ecoder Hlacks
Non-English transeription S
| — o —
& -0 2o g geineE UFL gD g —
Sirwiscidal * —
[o= 20 g2 yeig=s 420 g2 w2 - Positianal e &
Ercoding -

No speech 2 Conan s GELU S, ;,! B pmaned
K} (backgreuna music playing) Encading
D @ SOT| EN e | 0.0 | The Emck

L). Log-Mel Spectrogram Tokens in Mubitask Training Format
Multitask training format Larguage XX o
g e ntication Transoription nrr\c-alwdi_n on
1 l r 2]
LANGUAGE begin || end bogin | [end
o me = TRANSCRIEE prcal e T gl I i -h-. Bt tokens ime |,
PREV previous START OF - - - - - : - EOT
fext fokens | TRANSERIPT | e = ’ o
SPEECH e TMESTAMPS | tet tokens *
Cusiom wocabulary ! =
L
promeang | R
- - W;I"“'Y L X — Englsh Test-only franscription
special texd mestamp -:\':I;II:“ R jalcws dataset-specific fine-tuning|
lakens Inkens. B

Figure 2.2: Overview of the Whisper architecture (RADFORD et al., 2023).

Whisper has been trained on large datasets of transcribed audio, allowing
the model to learn complex patterns and linguistic nuances. Its generalization
ability is enhanced through techniques such as transfer learning, where the
model is initially trained on large datasets and then fine-tuned for specific
tasks. Whisper’s results stand out by demonstrating effectiveness in the speech
transcription task across different scenarios and various reference datasets.

For this research, within the scope of speech recognition, we utilized
Faster-Whisper (KLEIN, 2023), a reimplementation of the OpenAI Whisper
model. It utilizes the fast-inference mechanism CTranslate2 for transformer

models. This implementation achieves speeds up to four times faster than the

Chapter 2. Theoretical Reference 23

OpenAl Whisper model while maintaining the same accuracy and requiring
fewer memory resources. Faster-Whisper stands out as an efficient alternative
that provides equally satisfactory results, which is crucial for our real-time
application.

The accuracy of speech transcription directly contributes to the quality
of the generated subtitles and, consequently, to the user experience. In this
research context, we will examine how models like Faster-Whisper can be
integrated into the videoke generation process, enhancing the accuracy and

usefulness of real-time generated transcriptions.

2.2.3
Subtitle Synchronization

Subtitle synchronization is an important step in the videoke generation
process concerning the user experience, ensuring that subtitles are aligned with
the corresponding segments of the audio recording (BRITTO, 2018).

Subtitle synchronization refers to the precise determination of when each
subtitle should be displayed during video playback. This task is essential to
ensuring that subtitles adequately accompany the audio content, allowing for

coherent visualization of the song lyrics.

2.2.3.1
SubRip Subtitle

A widely used file format for storing subtitle synchronization information
is the SubRip Subtitle (SRT) format. This format adopts a simple text
structure, where each subtitle is associated with a sequential number, followed
by temporal information indicating the start and end of the subtitle display.
SRT uses the convention of hours, minutes, seconds, and milliseconds to
accurately represent temporal instants.

Example structure of an SRT file:

1
00:05:00,400 --> 00:05:15,300

This is an example of a subtitle.

The typical structure of an SRT file consists of three main parts: the sequential
subtitle number, the time interval during which the subtitle should be displayed, and
the textual content of the subtitle itself. This organization facilitates reading and
interpretation by media playback systems, ensuring the synchronized presentation
of subtitles throughout the corresponding video.

The accuracy of subtitle synchronization is responsible for the overall quality of

the videoke experience, allowing users to follow song lyrics as they are played. In this

Chapter 2. Theoretical Reference 24

research context, based on the results obtained by the audio transcription model, we
will seek to automate the process of subtitle generation and synchronization. This
process will be integrated into the real-time videoke generation process, ensuring

synchronization between subtitles and the corresponding audio playback.

2.2.4
Incorporating Elements into Videos

The incorporation of multimedia elements refers to the insertion of additional
data into an existing video composition. In our research, this data will be the
subtitles. This process allows the inclusion of generated subtitles into music video
clips. For this stage, we will use a widely used tool in studies related to this topic,

FFmpeg.

2.2.4.1
FFmpeg

FFmpeg is an open-source software tool that has become prominent for
audio and video manipulation, including the efficient incorporation of additional
elements such as subtitles. Through the command line, FFmpeg offers a wide
range of functionalities, allowing the addition of subtitles, overlays, or any other
graphic element to videos with different formats and resolutions (NEWMARCH;
NEWMARCH, 2017).

To incorporate subtitles using FFmpeg, you can use the subtitles filter. This
filter allows overlaying subtitles onto a specific video track, adjusting their position,
size, and appearance as needed. An SRT file is the input file sent on the command
line in FFmpeg.

Command line example to embed an SRT file into a video:
$ ffmpeg -i video.mp4 -vf subtitles=subtitle.srt output_video.mp4

The effectiveness of FFmpeg in incorporating elements into videos lies in its
ability to process various input formats and offer advanced configuration options.
This flexibility makes FFmpeg the ideal tool for us to use in creating videokes with
multimedia elements generated during the process.

In the scope of this research, we will explore how FFmpeg can be integrated
into the real-time videoke generation process, enabling dynamic subtitle incorpora-

tion and manipulation of video and audio in the generated videoke medias.

2.3
Video Streaming

Video streaming is a technique for efficiently delivering multimedia content,
enabling the continuous playback of audio and video in real-time without the need
to wait for the complete file download. In this Section, we will explore the essential

definitions related to video streaming and examine in detail the use of the HT'TP Live

Chapter 2. Theoretical Reference 25

Streaming (HLS) protocol to establish a client/server architecture, thus simulating

a streaming flow.

2.3.1
HTTP Live Streaming (HLS) Protocol

The HLS protocol stands out as a widely adopted solution for implementing
video streaming. HLS divides the video into small segments, which are subsequently
transmitted to the client through HTTP requests. This approach facilitates dynamic
adaptation to the available bandwidth, adjusting the transmission quality as neces-
sary to avoid playback interruptions.

One of the main benefits of this protocol is related to its compatibility features.
Unlike other streaming formats, HLS is compatible with a wide variety of devices
and firewalls.

The client-server architecture employed by HLS involves the sequential trans-
mission of video segments, with the client continuously requesting new segments as
playback progresses. The server, in turn, maintains a list of available segments and
manages delivery according to client requests. This dynamic interaction between
client and server creates the illusion of a continuous video stream, even as data is
transmitted incrementally. Figure 2.3 illustrates the three components of an HT'TP
Live Stream: the server component, the distribution component, and the client soft-

ware.

Index _—_s
file .mp4

Origin web server
|
|
|

Stream segmenter

Figure 2.3: Components of an HTTP Live Stream

In a standard scenario, a hardware encoder receives audio and video signals
and performs encoding into formats such as HEVC video and AC-3 audio, resulting
in the production of a fragmented MPEG-4 file or an MPEG-2 transport stream.
Subsequently, a stream segmenter, operating through software, divides this stream
into multiple short media files, which are then stored on a web server. Simultaneously,
the segmenter creates and updates an index file containing a list of the media files.
The URL of this index file is published on the web server. The client software, upon

reading the index, requests the media files in the presented sequence and plays them

Chapter 2. Theoretical Reference 26

continuously, without interruptions or noticeable gaps between segments (PANTOS;
MAY, 2017).

In the context of this research, we will analyze the integration of the HLS
protocol into the real-time videoke generation process. We will understand how
adopting this video streaming technique enables the delivery of multimedia content,

aiming to ensure a real-time videoke experience.

3
Related Works

This Section aims to analyze works related to the research proposed in this
study, resulting from a systematic literature review. The literature review aimed to
build a knowledge base on the current state of studies on this topic, aiming to identify
opportunities for contribution to the proposed method. To achieve this purpose, the
literature review was conducted specifically, using keywords and consulting various
academic and technical sources.

Next, we will detail the process that guided this review, addressing the
keywords used, the repositories consulted, the considered time window, and the
inclusion and exclusion criteria adopted for the selection of works.

To identify studies related to the creation of an approach for real-time videoke
generation from video streaming sources, the following keywords were used: real-time
videoke, automatic karaoke generation, and real-time video streaming processing.

The investigation of related works covered various sources of information,
including academic databases such as the ACM Digital Library and Google Scholar,
as well as preprint repositories such as arXiv. Additionally, specialized portals for
multimedia conferences, such as the International Multimedia Conference (MM),
were explored.

The literature review encompassed works published from early 2013 to the
most recent date available, which is September 2023. This temporal scope was
established to ensure the inclusion of the most relevant and up-to-date works in
the analysis.

To ensure the quality and relevance of the selections, inclusion, and exclusion
criteria were applied. Regarding the inclusion criteria, works were considered that
directly addressed the challenges associated with automatic karaoke and videoke
generation or explored approaches related to real-time video streaming processing.
Additionally, these works needed to be available in Portuguese and/or English.

In contrast, the exclusion criteria involved studies that did not maintain a
direct connection with the theme of karaoke or videoke generation. As well as
outdated works or those employing obsolete methods, not significantly contributing
to the understanding of the problem. Additionally, works that were not freely
accessible in full were excluded.

Based on these criteria, the works (TACHIBANA et al., 2016), (KWAN; SUN;
YUDITSKAYA,), (CHEN; CHEN; JANG, 2021), and (FERNANDO et al., 2023)
were selected to compose the related works Section of this dissertation, allowing
for a comprehensive and comparative analysis of the state of the art regarding the

solution to the issue at hand.

Chapter 3. Related Works 28

3.1

A real-time audio-to-audio karaoke generation system for monaural
recordings based on singing voice suppression and key conversion tech-
niques

In (TACHIBANA et al., 2016), published in 2016, a real-time karaoke audio-
to-audio generation system based on techniques of sung voice suppression and pitch
conversion is proposed. The general idea of the study focuses primarily on audio
manipulation, presenting an automated system capable of suppressing the singer’s
voice in audio recordings of songs and performing real-time pitch conversion.

The authors developed an interactive music player called Euterpe. The system
allows users to lower the vocal part and change the pitch of accompanying sounds.
The system is basically a combination of already-known techniques, and therefore
does not claim novelty in each technical component. However, they claim that this
article has the following contributions: they demonstrated that a sung voice enhancer
is as promising as a sung voice suppressor, and they developed a system that works
in real-time by choosing lightweight technical components.

The problem with this approach is the singularity concerning the elements
found in a karaoke system, as the study only addresses audio manipulation. The
authors suggest as future work the construction of more intelligent karaoke systems,

with the addition of displaying song lyrics.

3.2
Karaoke of Dreams: A multi-modal neural-network generated music
experience

The work presented in (KWAN; SUN; YUDITSKAYA,), published in 2020,
proposes a multidimensional approach to the karaoke experience. The Karaoke of
Dreams (KoD) is a deep learning karaoke environment that generates music and
videos based on user input of song titles.

The generation of karaoke songs consists of three components: lyrics, music,
and the corresponding music video. The generation pipeline is modular, where
both the music and the video are interconnected with the generated lyrics. In each
generation module, a finely tuned open-source neural network model was employed.

In this process, KoD operates in the auditory dimension in harmony, melody,
lyrics, and style. For the musical dimension, it reproduces 5-track pop songs
generated by a Generative Adversarial Network (GAN), rendered through a Pure
Data patch. In the visual dimension, it operates on images associated with words
using attention GANs. In the linguistic dimension, it is generated by the fine-
tuned GPT-2 in pop song lyrics. For the spatial dimension, it is a quadruple-
rotating tesseract, delineating the three-dimensional space. The human element is
the participant’s voice and performance in the generated concert experience. Figure

3.1 shows the prototype created of the multidimensional space.

Chapter 3. Related Works 29

Figure 3.1: Participants singing in the KoD (KWAN; SUN; YUDITSKAYA,).

The major limitation mentioned in the work is the inability to generate on-
demand content. For the authors, a pipeline could be constructed so that the song
title, lyrics, music, and images can be generated in real-time immediately after the

participant’s input, in order to make the experience more engaging.

3.3
Singer separation for karaoke content generation

In (CHEN; CHEN; JANG, 2021) published in 2021, the authors address a
specific challenge within the context of karaoke content generation, which is the
separation of musical sources. As explained in Section 2, musical source separation
can be used to separate the main singer’s voice from the rest of the music.

Each song includes many components, such as drums, piano, vocals, har-
monies, etc. They divide these components into accompaniment and vocals. There-
fore, a singer separation system (SSSYS) includes two steps, as shown in Figure 3.2,
where step 1 separates the music into accompaniment and vocals, and step 2 divides
the mixed vocals into two vocal tracks. In the vocal separation step, an enhanced
version of the Wave-U-Net model was used to accurately differentiate between vocals
and accompaniment. Then, the resulting vocal files were used as training materials
for the second step. In the main vocal separation step, the vocals are mixed to form
various audio files and undergo a model self-selection. The models used in this step
were the DPRNN and DPTNet, which convert mixed vocal data into two vocal

tracks.

Chapter 3. Related Works 30

Vocal Separation

UNET* | mp

=
‘ Singer B Voc.

———

T -

Figure 3.2: System flowchart of singer separation system (CHEN; CHEN;
JANG, 2021).

This work focuses exclusively on a delineated stage within our karaoke
generation method, specifically on the separation of musical sources. However, the
approach of isolating the vocals and generating distinct audio tracks for one or more
singers in a musical composition emerges as a potential enhancement to significantly
improve the proposal of this dissertation.

Exploring the ability to separate and individualize voices in a musical track
represents a promising extension of this work. This extension can enrich the user
experience, allowing for greater customization in karaoke playbacks. By considering
singer separation as an additional focal point, we can broaden the horizons of this
study, delving into the complexity and practical benefits of this unique approach in

the context of real-time karaoke generation.

3.4
Hybrid Y-Net Architecture for Singing Voice Separation

Finally, in (FERNANDO et al., 2023) published this year, a new deep learning-
based approach, the Y-Net architecture, is proposed. It is designed to separate hybrid
musical sources, and it is an end-to-end solution capable of extracting features from
both spectrogram and waveform domains. The architecture combines the advantages
of raw audio and spectrogram representations to estimate a time-frequency mask for
separating the singing voice.

The Y-Net architecture consists of two main components: a learnable filter
and a Y-net. The learnable filter offers the advantage of learning filters capable of
extracting crucial features that are not present in the STFT spectrogram, while
incorporating phase information. The Y-net extracts features from both domains

and reconstructs the spectrogram of the singing voice.

Chapter 3. Related Works

Complex Spectrogram

1

Complex Spectrogram Reconstruction

i

!

Estimatad Vocal
Magnitude
Spectrogram

sl

|

Decoder

Elemant wise Multiplication |

E

Cin=1 Cow=1 |

1

5;\ Eip=16x3 Coy=1

31

L i

Viocal Waveform

i
Vo

T\ dilation rate = 1

5

Cin=32x3

= i
X Cout=16

Tmanmu-:

iy

B, Cin=64x) Cou=32 f-',-’

dilaticn rate = 4

=

®, Cin= 1283 &

Cout = G4

Tmm-l

Spectral

$.Cin=258x3 Cout= 1284

1‘ stion mi:l

\c.n =512 Cou -25&/

“Cin =512 , Cout= 512,/

Branch

|—>{

Concatenabi Waveform

' G =128 Couy= 256

Branch

AN

diilaticn rate = 16

_-7/ L =84 Cg,=128

diilation rate = 16

\

/ Co=64 Cp, =128

ey Cjp=32 Cout=54

/ C,,=32 Cout=64

\

dilaticn rate =4

-

dilation rate = 4

Cp=18 Cpy=32 \\ / Cp=16 ©Copq=32
aiation rate = 2 aiation rats = 3
—-7/ Co=1 Cou=16 / Cp=1 Cou=16

Magnitude Spectrogram

—l Phase Spectrogram

mnmn\
|

Learnable Spectrogram

i

Mixture Waveform

Figure 3.3: Y-Net Architecture (FERNANDO et al., 2023).

/c.n-m Cpuq = 256 “_

T dilsticn rate .1\\7

Chapter 3. Related Works 32

The network proposed in this related work consists of two encoding branches,
namely the waveform branch and the spectral branch, which deal with raw audio
and the spectrogram, respectively. The front part of the raw audio encoding branch
includes a learnable spectrogram module, which converts raw audio to a spectrogram
format. Then, two encoders extract features from both inputs, which are then merged
into the core of the network and sent to the decoder. The decoder consists of a stack
of upsampling layers that decode the features to the original size of the spectrogram,
as shown in Figure 3.3.

This work, like (CHEN; CHEN; JANG, 2021), also focuses on improving a
delineated stage within our karaoke generation method, which is the separation
of musical sources. Thus, the limitation of generating karaoke content solely by
manipulating audio also fits into this study, opening up possibilities to enhance the

generated content by adding other elements, such as video and subtitles.

3.5
Discussion of related work

It is noteworthy that there is considerable emphasis placed on the task of
vocal separation when examining related works in karaoke generation, as this stage
plays a crucial role in the process. In our research, we are dedicated to applying
established techniques of vocal separation and speech recognition, aiming to achieve
high-quality results in these specific stages of videoke generation.

Among the related works, our proposal stands out as the first to explore a
holistic approach. We are encompassing the video experience, audio devoid of original
vocals, and synchronized subtitles, with word-level highlights, in the generation of
real-time videoke from video streaming sources. Compared to the works presented
in this Section, our study stands out for following this approach.

Table 3.1 provides a comparison of the elements addressed in karaoke genera-
tion among the works listed in this Section. The presence or absence of each element
is indicated by “yes” or “no”, offering a clear view of the distinct contributions and
gaps in existing research on karaoke generation. This comparative analysis reinforces
the relevance of our work in the current landscape, highlighting its contributions in

the field of real-time videoke generation.

Table 3.1: Elements covered in each work.

Chapter 3. Related Works 33
Reference Video | Audio | Subtitles | Word Level Sync | Real Time
(TACHIBANA et | No Yes No No Yes
al., 2016)

(KWAN; SUN; | Yes Yes Yes No No
YUDITSKAYA,)

(CHEN; CHEN; | No Yes No No No
JANG, 2021)

(FERNANDO et | No Yes No No No
al., 2023)

Ours Yes Yes Yes Yes Yes

4
Proposal

In this chapter, we will present in detail the method we have developed for real-
time videoke generation. Our method, which we refer to as the Videoke Generator,
is a solution composed of a series of interconnected modules. Each module performs
a function in achieving the desired result, which is the automatic generation and
playback of videoke media in real time.

The goal in generating videoke media is to provide users with a complete
experience, including the original music video, the audio without vocals, and
subtitles synchronized with word-level highlights to be sung at the correct moment
of the melody. It is worth noting that our proposal was designed to perform this
videoke generation process in real time or near real time, optimizing it especially for
continuous video streaming.

To better understand the operation of the Videoke Generator, we will explore,
in the subsequent Sections, the detailed analysis of each component of the proposed
method, as illustrated in Figure 4.1. We will highlight the specific functionalities of
each module, their relevant contributions to the overall system, and how the cohesive
integration of these components results in a dynamic videoke experience.

This description of the method aims not only to clarify the technical operation
of the Videoke Generator, but also to highlight the potential practical applications

and benefits for end users.

Chapter 4. Proposal

Videoke Generator

1
]
! :
1
' i
: :
p Speech Recognition 1
! Pre-trained Model !
1 1
]
! :
1

Vocal Separation

1 1
1 1
] 1
1 1
1 1
] 1
i Music Source 3
1 q 1
i Separation 3
] 1
1 1
1 1
1 1
1 1

v v

([VocalChunk] [AccChunk)

SuUonNIaxXI N

Subtitle Generation

1 1
: 1
! 1
: :
l :
! I
! [

[Subtitle Chunk][Timestamps Chunk]

Subtitles Synchronization

[Subtitle Chunk][Timestamps Chunk]

v
/ SRT Module \

Videoke Chunk Generation
(Video Chunk] [SRT Chunk] [Acc Chunk]

/ FFmpeg \

v
Videoke
Chunk

Figure 4.1: Method for Real-Time Automatic Videoke Generation

35

Chapter 4. Proposal 36

4.1
Audio Track Extration

The process begins with the Audio Track Extraction module, as illustrated
in Figure 4.2. This module receives the video stream and performs a basic audio
extraction operation, generating temporary files containing the unaltered audio
from the video. This extraction aims to create two types of independent files: one
containing the video and another containing only the audio, allowing them to be

processed separately in the subsequent modules.

Audio Track Extraction

| | Video | |

v

1
1
1
I
1
1
:
/ FFmpeg \ |
:
1
1

v

[video] [Audio]

Figure 4.2: Audio Track Extraction Module

As the temporary audio files are successfully generated, the method can pro-
cess them independently of the corresponding video. This is particularly important
because, throughout the process, various operations and modifications will be ap-
plied to the audio to fit the videoke proposal. Therefore, the Audio Track Extraction
module plays an initial role in the method, serving as the starting point of the pro-

cessing flow.

4.2
Temporal Marking Generation

In the subsequent stage of the videoke generation process, the Temporal
Marking Generation module, as illustrated in Figure 4.3, plays a significant role
in creating a central element called Segments. These Segments are generated by

applying a pre-trained model to the audio transcription task.

Temporal Marking Generation

v

Speech Recognition
Pre-trained Model

Figure 4.3: Temporal Marking Generation Module

Chapter 4. Proposal 37

The Segments are a data representation that incorporates essential information
such as identifiers, transcriptions, and the start and end times of each segment.
These temporal details are crucial for guiding the division of the video and audio
into smaller, more manageable parts. These smaller parts are referred to as video
and audio chunks, the purpose of which will be detailed in the following Sections.

The resulting data serves as a temporal map, allowing the system to locate
specific moments when parts of the music are sung, ensuring that the division of
the video into smaller Sections preserves all relevant information between segments.
In the upcoming Sections, we will explore in detail how the Segments guide the
division of the video and audio into smaller parts, as well as the transcription and
synchronization of song lyrics. It is important to note that although the Segments
contain transcription information, the file with the transcribed text has not yet been

generated at this point in the process.

4.3
Chunk Division

The creation of chunks represents the granularization of the flow to enable the
processing and playback of videoke in real time, or close to it. The importance of
this step stems from a series of interrelated factors that have a direct and significant
impact on the overall effectiveness of the system. For example, the processing time
of each chunk is crucial to ensuring uninterrupted video playback. The structure of

this module of the process is represented in Figure 4.4.

'
L I

: Chunk Division 1
| '
I

: v i
! / FFmpeg \ :
: |
| I
I [videocChunk] [Audio Chunk J

Figure 4.4: Chunk Division Module

Initially, the chunks are generated from the previously extracted video and
audio files, following the temporal markings defined in the Segments. This procedure
creates synchronized segments that correspond to specific parts of the song, ensuring
the absence of abrupt cuts that could impair the user experience. The concern to
avoid unexpected cuts arises due to the possibility of losing sung information between
the song segments, which would compromise the synchronization of lyrics with the
videoke images. Each chunk corresponds to a section of the song in which the lyrics
are displayed according to the rhythm and timing of the music, providing a natural
experience for users. This eliminates possible perceptible discontinuities that could

disrupt the continuity of the videoke.

Chapter 4. Proposal 38

Additionally, the subdivision into chunks allows for efficient video processing,
as the larger the video being processed, the longer the runtime of the models. By
creating smaller segments, the system can handle each chunk independently, enabling
immediate playback after processing is completed, without waiting for the other
chunks. This approach aims to provide users with access to processed video segments
while others are still being processed, significantly improving the efficiency of the
videoke generation flow. This aspect is especially important in real-time processing
scenarios, where latency can be considered the most critical point of the process.

In summary, the creation of chunks plays a role in ensuring coherence in the
generated segments and minimizing runtime during processing to maintain seamless

playback.

4.4
Vocal Separation

In the vocal separation stage (Figure 4.5), the audio chunks undergo special
processing using a pretrained model for source separation. This stage aims to remove
the original vocals from the music and create a temporary audio track containing
only the instruments. This process is necessary to fulfill the core concept of videoke,

which is to allow users to sing along with their own interpretations.

'
. I
: Vocal Separation !
| Audio Chunk :
| v .
| Music Source Separation !
| Pre-trained Model :
I
, v v .
\ [vocalchunk] [AccChunk] 1

Figure 4.5: Vocal Separation Module

Vocal separation is a notoriously complex task, and this is where the pretrained
model comes into play as an auxiliary tool in our method. This model is trained on a
vast amount of data, enabling it to distinguish between vocal elements, representing
the singer’s voice, and background elements, representing the instrumental music.
This distinction is absolutely essential, as it allows our system to isolate and separate
the original vocals from the music, resulting in an instrumental track that will serve
as the basis for user performances.

Therefore, the vocal separation stage, driven by a pretrained model, plays a
fundamental role in our videoke creation process, enabling the extraction of original

vocals from the background music in each chunk.

Chapter 4. Proposal 39

4.5
Subtitle Generation and Synchronization

At this stage, we resume the use of the object generated by the pretrained
transcription model, previously created based on the original audio. The process of
generating transcribed texts occurs at this point in the flow. The Segments object
contains transcription information; however, to generate the transcription files, it is
necessary to access them by iterating through the object and relating its identifiers
to the chunk being processed. By accessing this information, we obtain detailed
transcriptions for each chunk, capturing each word of that chunk along with its
respective timestamps. This procedure is carried out to cover all audio segments
corresponding to each chunk.

The quality of word-level transcriptions is of paramount importance for the
user experience, as it allows lyrics to be displayed synchronized with the melody.
This information is combined with a specialized script we developed internally, called
the SubRip (SRT) Module. This module automates the process of generating SRT
files. Its script accesses the information provided by the Segments and automatically
writes the corresponding SRT file for each chunk. This procedure aims to generate
subtitle synchronization files that will be incorporated into the video, specifically
designed for this purpose.

The resulting SRT files incorporate synchronized subtitles and word-level
highlights for each chunk. The highlights emphasize the words as they are sung
in the music, creating a visual effect that significantly enhances the perception of
song lyrics.

This approach is illustrated in Figure 4.6 and not only ensures that song lyrics
are synchronized with the melody but also enriches the user experience with word-

level highlights, making it more intuitive to follow along with a song.

Subtitle Generation

1
1
e)y
1
1
1

[Subtitle Chunk][Timestamps Chunk]

- = o

Subtitles Synchronization

[Subtitle Chunk][Timestamps Chunk]

/ SRT Module \

Figure 4.6: Subtitle Generation and Synchronization Module

Chapter 4. Proposal 40

4.6
Videoke Chunk Generation

Finally, Figure 4.7 illustrates the phase where the video chunk is merged with
the subtitles and the corresponding audio, resulting in a videoke chunk. This stage
marks the tangible outcome of the entire videoke generation process, transforming
a series of separate elements into a single video media. This videoke chunk is

temporarily stored as a file on the servers, awaiting delivery to the user.

Videoke Chunk Generation
[video Chunk] [SRT Chunk] [Acc Chunk

e
/ S \

v

Videoke
Chunk

Figure 4.7: Videoke Chunk Generation Module

4.7
Real-time processing and buffering

To conclude the real-time videoke generation process, it is crucial to under-
stand the integration of all the previously mentioned modules and steps. The entire
method has been designed to operate within a client-server architecture, where pro-
cessing occurs on the server side and playback on the client side. To enable this
structure, an effective means of communication between these two parts must be
established.

The central point for controlling and managing the chunks is the use of a video
transmission protocol. This protocol plays the role of coordinating and synchronizing
each component of the videoke, allowing the chunks generated by the Videoke
Generator flow to be transmitted continuously and in real-time, or close to it.

The mechanism for managing the video transmission protocol is a playlist file,
also known as a manifest file (m3u8). This file is responsible for coordinating the
playback of the chunks, serving as the basis for continuous communication between
the server and client. It contains essential metadata, such as the total duration of
the videoke chunk, the playback order of the chunks, and other details relevant to
ensuring proper synchronization between audio, video, and subtitles. It acts as a
guide for the media player, allowing it to request and play the chunks in the correct
sequence, ensuring smooth playback.

To set up a server with a video transmission protocol, several technical details
must be considered to ensure efficient performance. Firstly, the choice of server

software is crucial. Popular options include Wowza Streaming Engine, Adobe Media

Chapter 4. Proposal 41

Server, and NGINX. Each of these software options offers specific features and
requires proper configurations to meet the project’s needs.

After installing the server software, it’s important to properly configure the
video transmission properties. This includes setting the available bandwidth for
transmission, video resolution, frame rate (FPS), and encoding format, such as H.264
or H.265. These settings should be adjusted according to the project specifications
and the capabilities of the available network infrastructure.

To configure the client side, a strategy that can be used is to use an HTML
player. Typically, these players are JavaScript libraries that allow playback of video
streams based on some video transmission protocol directly in the browser, without
the need for additional plugins.

In addition to the basic configuration, it’s also significant to consider the
player’s compatibility with different browsers and devices. Although HTML players
are widely supported in most modern browsers, there may still be performance and
behavior differences among different playback environments. Therefore, it’s advisable
to perform tests on a variety of browsers and devices to ensure a consistent playback
experience for users.

Real-time processing requires careful management of the buffer, which tem-
porarily stores video data before it’s played back on the client. In the specific case of
HTML players, the client-side buffer plays the role of ensuring smooth and contin-
uous video playback. While the server is processing the initial block of chunks and
waiting for their completion to add them to the manifest file, the HTML player’s
buffer is displayed to the user on the screen.

During this period, the HTML player’s buffer remains constantly loading, as
the video files have not yet been added to the manifest file and thus are not ready
for playback. The duration of this loading can vary depending on the number of
chunks in the initial block and the server’s processing capacity.

An initial latency ranging from 10 to 30 seconds is considered reasonable
according to the documentation of some video transmission protocols, such as
HLS (PANTOS; MAY, 2017) and MPEG-DASH (SODAGAR, 2011). For most
broadcasters, this is not an issue, and a live stream can handle such a delay without
causing user dissatisfaction.

It’s important to note that processing capacity is only considered on the server
side. On the client side, the HTML player only plays the video. Therefore, the system
can be used anywhere with the ability to open an HTML player, such as a computer
or a mobile device.

Once the server completes the processing of the initial block of chunks and
adds them to the manifest file, playback can be initiated on the HTML player. At
this point, the player’s buffer begins to be filled with the video data transmitted by
the server, allowing playback to occur smoothly and without interruptions.

While the processed block is being played back on the client side, the server

continues to process the remaining chunks and adds them to the manifest file

Chapter 4. Proposal 42

whenever each one finishes its videoke generation process. This allows the video
to be processed while it’s being played back, ensuring that the user does not even
notice the processing, thus making it happen in real-time, or close to it.

It’s important to highlight that, to ensure an optimal viewing experience, it’s
essential to optimize the buffer. This includes adjusting the chunk block size to
balance latency and playback quality, as well as designing a server with reasonable

processing power to ensure stable and efficient transmission.

5
Experiments and Results

In this section, we will provide a detailed description of the experimental
settings, the third-party software used, the implementation and execution of the
method, as well as the analysis of the results obtained. Our goal is to ensure the
reproducibility of the work, enabling other researchers and developers to use and
evaluate the prototype developed in various contexts.

Initially, we will describe the experimental settings, including details about
the hardware and software used during the experiments. Next, we will present the
third-party software employed, highlighting its functionalities and contributions to
the project’s development. Subsequently, we will address the implementation of the
proposed method, providing information about the system development process and
the steps involved in real-time videoke generation.

Following the implementation description, we will detail the execution of the
experiments, including the procedures adopted for data collection and system per-
formance evaluation. We will analyze the results obtained in terms of video quality,
audio and subtitle synchronization, transmission latency, and other parameters rel-
evant for evaluating the method.

Finally, we will discuss the conclusions drawn from the conducted experiments,
highlighting the strengths and limitations of the developed prototype, as well as
possible directions for future research and enhancements. Through this Section, we
aim to offer a detailed insight into the experimental process, providing insights for
the academic and professional community interested in the development of real-time

videoke generation systems.

5.1
Configuration

Before delving into the details of the experiments, it is essential to present the
settings used in the development and experimentation of the method. This includes
information about the hardware used in the experimentation, including details about
the processor, RAM, storage capacity, and other components relevant to the system’s

performance.

5.1.1
Hardware

The experiments were conducted on a remote server with the following

specifications:

— Processor: Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
- RAM: 62GB

Chapter 5. Experiments and Results 44

— Graphics Processing Unit: NVIDIA GeForce GTX 1080

5.1.2
Third Party Software

To implement and execute our prototype, we utilized a variety of third-party

software, including:

— Python 3.8: The primary programming language for code development.

— FFmpeg: A command-line tool for video and audio processing, used for

manipulating and converting media formats.

— SubRip (SRT): A widely used subtitle file format for creating and synchro-

nizing subtitles.

— Demucs: Pre-trained model for the Task of Music Source Separation
(ROUARD; MASSA; DEFOSSEZ, 2023)

— Faster-Whisper: Pre-trained model for Audio Transcription Task (KLEIN,
2023)

— HTTP Live Streaming (HLS): Widely used media streaming protocol for

transmitting audio and video content over the internet

5.2
Experimentation

In this Section, we will detail the experimental procedures carried out within
the scope of this project. The main objective of these experiments is to implement
a prototype using the proposed method for real-time videoke generation outlined in
this research. To achieve this goal, a series of tests were conducted, encompassing a
variety of music genres and execution conditions. This approach allowed us to assess
the generalization capability of our prototype in different scenarios.

The experiments were structured according to the method described in Section
4, following a sequence of steps. Initially, we prepared the experimental environment,
configuring the server and client according to the previously defined specifications.
Next, we selected a sample of music representative of various genres to compose our

test base.

5.2.1
Audio Track Extraction

In this Section, we will describe the experiments conducted in the Audio Track
Extraction stage, which constitutes the first step of the proposed method for real-
time videoke generation. The main objective of this stage is to extract the audio
track from a video stream, creating a temporary file on the server containing the

unaltered audio, which will be subsequently processed in the following stages.

Chapter 5. Experiments and Results 45

The central component of this module is the class called Audio Track Extrac-
tor. This class is responsible for performing the extraction of the audio track from
the input video stream. To do this, the module uses the FFmpeg tool, which operates
via command line to generate two temporary files on the server, one with the video
and the other with the audio.

In the process of executing the FFmpeg command, various necessary argu-
ments are specified. For example, the audio codec to be used is determined, opting
for PCM (Pulse Code Modulation) with 16-bit little-endian. Additionally, a sam-
pling rate of 44100 Hz is established, a widely recognized and employed standard in
the audio industry. These parameters are crucial to ensuring the fidelity and quality

of the extracted audio track.

5.2.2
Temporal Marking Generation

In this phase of the process, we use a specific pre-trained model for audio
transcription. We opted for the Faster-Whisper model, a reimplementation of the
original Whisper model from OpenAl using CTranslate2, an inference acceleration
engine for Transformer models. We chose this adaptation due to its effectiveness,
being up to four times faster than the original model while maintaining the same
accuracy and requiring fewer memory resources, as documented by Guillaume Klein
in (KLEIN, 2023).

In practice, we developed a simple class called Transcriber, which plays the
role of utilizing the inference capability of the pre-trained model. This class is re-
sponsible for processing the audio track of the video, extracted in the previous stage,
and generating the object called Segments. These segments are structured represen-
tations containing relevant information for videoke generation. This approach allows
for the mapping of important parts in the audio, providing the necessary details to

synchronize subtitles with the video during playback.

5.2.3
Chunk Division

In the next stage of our process, we implemented the ChunkGenerator class,
which is responsible for creating video and audio chunks based on the information
contained in the Segments, as described in Section 4.3. To perform this task, we
used the FFmpeg tool as the operational base.

The ChunkGenerator class receives three parameters: the start time of the
chunk, the end time of the chunk, and a unique identifier for the chunk. Based on
this information, the code generates temporary files representing the video and audio
chunks, using the provided identifier.

These temporary files are created with the same video and audio codecs as

the input file, eliminating the need for reformatting or additional processing. This

Chapter 5. Experiments and Results 46

approach aims to optimize latency, as the video is simply copied directly, reducing
processing overhead.

An interesting feature was incorporated to enhance the real-time videoke
generation process. It was observed that most songs start with an instrumental
introduction devoid of vocals. Thus, it was realized that this non-sung initial segment
could be treated as a videoke chunk without the need to go through processing stages.
Based on the information provided by the Segments, we identified the moment
when the first sung part of the song begins. Therefore, we considered the entire
video segment until the start of the first sung part as the first videoke chunk, thus
minimizing processing time.

The files stored on the server to be sent to the client are of the Transport
Stream (.ts) type, also generated with the FFmpeg tool. We specify a bit stream
filter for the video, converting the H.264 video codec to a format called Annex B,
suitable for video streaming (SUBHASH, 2023). This file plays a fundamental role
in managing the streaming flow and is incorporated into the manifest file.

In cases where the song does not have an instrumental introduction, the first
chunk follows the same process as the others, resulting in a slight delay in the start
of the transmission. However, this delay is only the time needed to process the first
chunk, and details about the processing time for each chunk will be discussed later

in the results’ subsection.

5.2.4
Vocal Separation

Within the fundamental concept of a videoke, the stage of removing vocals
from songs is present. This phase is implemented through the VocalSeparator class,
whose objective is to separate the vocal parts from the audio, which can contain both
music and vocals. To perform this task, we utilize the Demucs model, a pre-trained
model for the task of music source separation, developed by the Facebook research
group (ROUARD; MASSA; DEFOSSEZ, 2023).

Demucs represents a cutting-edge technology model for source separation in
music, capable of isolating components such as drums, bass, and vocals from the
rest of the music. However, for our prototype, we chose to focus on separating only
two sources: vocals and instruments. The Demucs model is built on a convolutional
U-Net architecture, inspired by the Wave-U-Net, and has been adapted to become a
hybrid model, combining spectrogram separation techniques and waveform methods
with the use of transformers.

Vocal separation is internally performed by the VocalSeparator class, utilizing
the inference capability of the pre-trained model. This results in the generation
of new temporary audio files: one containing only the vocals, called the vocal
chunk, and another with the instrumental accompaniment of the music, called the
accompaniment chunk. These two chunks constitute the basis for the subsequent

stage of the videoke generation process.

Chapter 5. Experiments and Results 47

5.2.5
Subtitle Generation and Synchronization

One of the contributions of this work is the automatic synchronization of
subtitles at the word level. This synchronization follows the highlights that coincide
with the part being sung in the video. This result was achieved through the module
we developed, called the SubRip Module.

The implementation of this module involves the creation of the SRTFileGener-
ator class, whose objective is to generate temporary subtitle files in the SRT format.
The files are generated with subtitles that have dynamic highlights based on the word
information contained in a segment. These subtitles enrich the video experience as
they assist users in singing along.

Here is where we access the information from the Segments object through
their identifiers, and the written transcription generation occurs. This process
iterates through each of the identified segments, and each generated video and audio
chunk corresponds to a generated segment.

The creation of the temporary SRT file occurs in a loop that iterates through
the words in the segment. The script calculates the start and end times of the
subtitles and the moments when each word should be highlighted, based on the
temporal information of the words in the segment. Then, this information is added
to the file in SRT format.

The highlighting of the words is implemented by applying styling to the words.
We use yellow when they are being sung, while the others remain white. This
highlighting is achieved by formatting each word as an HTML tag and incorporating
it into the SRT file. Figure 5.1 represents an example of this styling in the subtitles.

Quem sabe eu ainda sou uma garnetinha
s

Figure 5.1: Example of styles in videoke

Chapter 5. Experiments and Results 48

At the end of this process, we obtain an SRT chunk, which contains synchro-
nized subtitles configured to highlight each word being sung in the video chunk. This
element is essential for the user experience, making the interpretation of song lyrics

more dynamic.

5.2.6
Videoke Chunk Generation

In the final stage of processing, we integrate all the elements generated so
far. At this point, we have a backing track chunk, an SRT chunk, and the video
chunk. Now, we need to merge these components to form a videoke chunk. To
achieve this, we implemented the VideokeGenerator class, whose main objective is to
create videoke chunks from the various mentioned sources. The process of generating
videoke involves the merging of video, audio, and subtitles. Thus, in this phase, we
again resort to the FFmpeg tool to manipulate these files.

It is important to note that, as these files will be used in a streaming flow,
each of them has a container with information, including timestamps for playback
within the playback stream. Therefore, it is necessary to inform these timestamps
to the videoke chunk to ensure continuous playback.

To accomplish this, when using the VideokeGenerator class, an offset is always
provided, representing the temporal marker of each videoke chunk. This offset is
calculated based on the accumulation of the duration of each chunk, referring to the
starting point of each videoke chunk in relation to the original video.

With all this information properly organized, the VideokeGenerator class uses
the FFmpeg tool to combine the video chunk, the backing track chunk, and the
subtitles, thus creating a videoke chunk. After merging these elements, we have a
temporary file in the Transport Stream (.ts) format, suitable to be added to the
manifest file and thus be requested by the client to continue the playback flow in

the player.

5.2.7
Architecture

The architecture proposed in this project is based on a client-server model,
designed to enable real-time or near-real-time processing of videoke generation.
This structure consists of two main components: the client, responsible for sending
requests, and the server, tasked with processing these requests and returning the
resulting videoke chunks.

Figure 5.2 visually illustrates this architecture. On the client side, users
interact exclusively with the HTML player, which makes requests to the server
to play the video. On the other hand, the server is composed of several modules,
each responsible for a specific stage of the videoke generation process, as detailed in

Section 4. For simplification, we abstract the Videoke Generator module.

Chapter 5. Experiments and Results 49

o2
- -

Internet

Figure 5.2: Client-Server Architecture for Streaming

The communication flow between client and server is continuous. To achieve
this, the server was configured with an NGINX web service and uses the HT'TP Live
Streaming (HLS) video transmission protocol.

NGINX provides an event-driven and asynchronous architecture, allowing
servers to handle HTTP requests efficiently. This protocol, in turn, is responsible
for transferring information between devices connected to a network, enabling
communication between client and server. The NGINX server is configured to
receive the videoke chunks and store and manage the manifest file, which contains
information about the available segments, their URLs, and their durations. The
NGINX server is represented by the HT'TP Server block in Figure 5.2.

Regarding HLS, this protocol originates from the server where the streaming
is being created. As it is based on HTTP, any common web server can originate the
streaming. Video data is reformatted so that it can be recognized and interpreted
by any device.

The flow of the architecture is intuitive: the video is initially divided into
segments, encoded, and sent to client devices over the internet when streaming is
requested. The client device, such as a smartphone or laptop, receives the stream
and plays the video, using the manifest file as a reference to assemble the video in

the correct order for playback.

5.3

Results

During the experimentation phase, we directed our attention to several key
points in evaluating the results, including transcription accuracy, vocal separation
quality, and synchronization between audio and subtitles. Each of these aspects was
analyzed to assess the prototype’s performance and usability.

In this Section, we will explore the results obtained from the prototype
development. The analysis also considers the processing times of the chunks, aiming

to validate the applicability of the solution for real-time or near-real-time contexts.

Chapter 5. Experiments and Results 50

5.3.1
Qualitative evaluation of videokes

To assess the quality of the generated videoke, we conducted 15 experiments
across the “Rock”, “Forr6”, “MPB”, “Rap” and “Pagode” categories. These exper-
iments were generated by the prototype, enabling us to perform evaluations. The
primary objective of this analysis was to provide a qualitative assessment of tran-
scription accuracy, vocal separation effectiveness, and synchronization between au-
dio and subtitles. Additionally, we aimed to understand the impact that different
musical genres have on the system’s performance.

The results of the experiments highlighted several relevant aspects. It was ob-
served that, regardless of the musical category, the experiments yielded satisfactory
transcriptions, quality audio, and a high rate of accuracy in audio-subtitle synchro-
nization. These results demonstrate that the music category is not a direct factor
affecting the system.

However, it was identified that other factors may impact the system’s perfor-
mance, which are not directly associated with musical style but rather with the song’s
rhythm and the level of interaction between the singer and the audience. Specifically,
the fast pace of some songs, such as Eminem’s “Rap God” and Haikaiss’s “RapLord”
posed significant challenges. The very fast and complex passages in these songs rep-
resented a difficulty even for human perception, which consequently impacted the
transcription accuracy and the overall quality of the generated videoke.

In addition to challenges related to the fast pace of certain songs, other factors
were also identified as significant influencers of the videoke generation system’s
performance. One of these factors is the level of interaction between the singer
and the audience during the performance of the songs. During the experiments,
it was observed that the presence of interactions, such as applause, shouts, or
audience conversations, introduces additional noise in the audio. These noises from
the interaction between the singer and the audience can cause distortions in the
audio, resulting in difficulties for the transcription model to correctly recognize and
interpret the song’s words. As a result, transcription failures occur, and consequently,
synchronization between audio and subtitles is compromised, compromising the
overall quality of the generated videoke. This phenomenon was especially noted in
the “Pagode” and “Forr6” genres, where singers interact heavily with the audience,
generating noise that is not related to the song’s lyrics.

These observations can guide future improvements and refinements in the
architecture and algorithms used, aiming to ensure a more consistent and satisfactory

experience for users in a variety of musical and interaction scenarios.

Chapter 5. Experiments and Results 51

5.3.2
Chunk processing time

As explained in 4.7, it is important to highlight that the chunk processing time
is directly related to the processing capacity of the server on which the system is
hosted. The server used for our experiments did not have a high-performance GPU,
unlike the benchmarks used in the music source separation and audio transcription
models. Therefore, the processing time values presented reflect the conditions of the
available hardware during the experiments. It is essential to understand that these
values are relative and subject to variations, as they can be improved or hindered
depending on the processing capacity of the available hardware.

To establish parameters, the music source separation (Demucs) and audio
transcription (Faster-Whisper) models were evaluated on an NVIDIA Tesla V100S
GPU, recognized for its effectiveness in artificial intelligence tasks. Considering the
transcription model’s processing time as a reference point, since it provides the audio
used in the tests, we based it on the time required to process an audio of 13 minutes
and 19 seconds (available at <https://www.youtube.com/watch?v=0u7tTptBo9I>).
On the NVIDIA Tesla V100S GPU, the average processing time for this audio was
approximately 59 seconds, while on our server, the same audio required an average
of 320 seconds. This difference highlights the direct impact of hardware on model
processing times. An advantage is that, being a client-server architecture, the client
side does not need to deal with these computational demands, as all processing is
performed on the server. Thus, the client only requests chunks that have already
been processed and plays them on the player, significantly simplifying the client
side.

We conducted a series of tests with different numbers of chunks in the initial
block to be processed, aiming to find a number that, suitable for our hardware,
established an initial buffer between 10 and 20 seconds. After several attempts, we
determined that the ideal value for the initial buffer size is three chunks. This buffer
allows the system to maintain a margin between the chunks being played and those
being processed, avoiding possible bottlenecks during playback.

Additionally, we analyzed the implementation of sung introductions detection,
mentioned in subsection 5.2.3. We observed that songs with unsung introductions
had a smaller initial buffer compared to those without these introductions, and
they had a larger safety margin, which further contributes to avoiding interruptions
during playback. It is important to highlight that the HT'ML player has the ability
to create a loading buffer for the user in case of playback interruptions. This buffer
allows the user to wait while the next chunk is made available in the manifest file

to be played. Once the chunk is available, playback resumes normally.

5.3.3
Evaluation of the models used

https://www.youtube.com/watch?v=0u7tTptBo9I

Chapter 5. Experiments and Results 52

5.3.3.1
Faster-Whisper

Speech recognition systems are typically evaluated based on the Word Error
Rate (WER) metric. However, WER, which is based on string edit distance,
penalizes all discrepancies between the model output and the reference transcription,
including benign differences in transcription style. As a result, systems that produce
transcriptions considered correct by humans may still exhibit a high WER due
to minor formatting variations. While this is a problem for all transcribers, it is
particularly pronounced for zero-shot models like Faster-Whisper, which lack access
to examples of transcription formats from specific datasets.

This is not a new finding; developing evaluation metrics that better corre-
late with human assessment is an active area of research. While there are some
promising methods, none have been widely adopted yet for speech recognition. The
Faster-Whisper model chooses to address this issue through extensive text normal-
ization before calculating WER, in order to minimize the penalty for non-semantic
differences. The text normalizer was developed through iterative manual inspection
to identify common patterns where naive WER, penalized Whisper models for in-
significant differences. All details of this process can be found in the paper published
by OpenAI (RADFORD et al., 2023).

WER measures the percentage of incorrect word transcriptions across the
entire set. The lower the WER, the more accurate the system is. In this regard,
Faster-Whisper has demonstrated good performance in multilingual transcription
tasks. Tests were conducted on datasets specific to this task, including the Multilin-
gual LibriSpeech (MLS) (PRATAP et al., 2020), Common Voice 9 (ARDILA et al.,
2019), and FLEURS (CONNEAU et al., 2023). Faster-Whisper achieved a WER of
6.8 on the MLS dataset, 6.3 on Common Voice 9, and 4.3 on FLEURS, which are
results that outperform the evaluation of other models for this task, justifying its

choice to be integrated into our system.

5.3.3.2
Demucs

For the task of music source separation, the evaluation is based on the Signal-
to-Distortion Ratio (SDR) metric, as defined by SiSEC18 (STOTER; LIUTKUS;
ITO, 2018). The tests proposed in the paper (ROUARD; MASSA; DEFOSSEZ,
2023) were conducted using the MUSDB dataset (RAFII et al., 2017), along with
additional training data.

These extra data were compiled into an internal dataset consisting of 3500
songs, with tracks from 200 artists spanning various musical genres. Each track
was assigned to one of four sources based on the name provided by the music
producer (e.g., “vocals2”, “sound effects”, “bass” etc.). However, this labeling is

susceptible to noise as these names are subjective and sometimes ambiguous. For

Chapter 5. Experiments and Results 53

150 of these tracks, manual verification was performed to ensure the accuracy of
automated labeling, discarding ambiguous tracks. With this, a first Hybrid Demucs
model was trained on the MUSDB and these 150 tracks.

The evaluation conducted in the paper published by the Facebook research
team compared the proposed model with various state-of-the-art baselines and also
provided baselines trained without any extra training data for reference. Comparing
with the baselines, it was observed that the enhanced sequence modeling capabilities
of transformers increased the SDR, reaching a value of 9.20 dB of SDR, which
outperformed the other evaluated models in the comparison. Based on these results,
the Demucs model was chosen to assist in the task of music source separation in our

system.

6

Conclusion and future work

Throughout this dissertation, we have presented a method for generating
videoke in real-time or near-real-time and built a prototype to validate the proposed
methodology. The research began with the motivation to overcome the limitations
inherent in traditional videoke systems, as detailed in Section 1. From this point,
we examined the challenges and opportunities associated with audio transcription,
music source separation, and word-level subtitle synchronization within the context
of automatic videoke generation.

The main goal of the work was to propose a method for automatic videoke
generation that could be implemented for real-time processing streams. This goal
was achieved by demonstrating the feasibility of the proposed client/server archi-
tecture and highlighting the transcription generation, audio quality, and subtitle
synchronization demonstrated in the results.

Additionally, the complementary contributions, which involved subtitle syn-
chronization with word-level highlights and the incorporation of a granularization
mechanism to allow chunk playback as they were processed, were also achieved. We
can also highlight as a contribution the effective use of cutting-edge audio transcrip-
tion and music source separation models in the method’s processing flow, as well as
the approach of a client/server architecture to enable the involved challenges. These
points contribute to the advancement of studies and development of systems focused

on the multimedia and entertainment field.

As possible directions for future work, we can mention some possibilities for
research evolution. The field of music source separation and audio transcription
is constantly evolving, so it would be interesting to investigate machine learning
techniques to improve the quality of vocal separation and audio transcription.
Another identified aspect is the opportunity to implement singer detection, as
described in (CHEN; CHEN; JANG, 2021), to allow duets and reduce the possibility
of errors in the generated transcriptions. Thinking about users, it would be pertinent
to create a scoring system for users and other ways to enrich the videoke experience.
In summary, this work is another step in a journey of continuous exploration and
innovation in videoke generation. The possibilities are vast, and we hope that this
study inspires future researchers and developers to continue enriching and expanding
the capabilities of this project.

7
Bibliography

ARDILA, R. et al. Common voice: A massively-multilingual speech corpus. arXiv
preprint arXiv:1912.06670, 2019.

BRITTO, J. O. Analise do Impacto da Sincronia de Legendas na Qualidade de
Experiéncia do Usuario. Tese (Doutorado) — Master's dissertation. UFES, ES, Brazil.
http://repositorio. ufes. br/handle ..., 2018.

BUSS, Z. da S. et al. Projeto “12&30": um relato de experiéncia integrando karaoké
e salde mental na universidade. Extensio: Revista Eletronica de Extensao, v. 19,
n. 44, p. 72-80, 2022.

CANO, E. et al. Musical source separation: An introduction. IEEE Signal Processing
Magazine, |IEEE, v. 36, n. 1, p. 31-40, 2018.

CHEN, H.-Y.; CHEN, X.; JANG, J.-S. R. Singer separation for karaoke content genera-
tion. arXiv preprint arXiv:2110.06707, 2021.

CONNEAU, A. et al. Fleurs: Few-shot learning evaluation of universal representations
of speech. In: IEEE. 2022 IEEE Spoken Language Technology Workshop (SLT).
[S.I.], 2023. p. 798-805.

DUNBAR, R. I. et al. Performance of music elevates pain threshold and positive affect:
Implications for the evolutionary function of music. Evolutionary psychology, SAGE
Publications Sage CA: Los Angeles, CA, v. 10, n. 4, p. 147470491201000403, 2012.

FERNANDO, R. et al. Hybrid y-net architecture for singing voice separation. arXiv
preprint arXiv:2303.02599, 2023.

HOSOKAWA, S.; MITSUI, T. Karaoke around the world: Global technology, local
singing. [S.l.]: Routledge, 2005.

KLEIN, G. Faster Whisper transcription with CTranslate2. 2023. Disponivel em:
< https://github.com/guillaumekin /faster-whisper>.

KWAN, D.;: SUN, S.: YUDITSKAYA, S. Karaoke of dreams: A multi-modal neural-
network generated music experience.

LUM, C. M. In search of a voice: Karaoke and the construction of identity in
Chinese America. [S.l.]: Routledge, 2012.

MEHENDALE, N. et al. Vocal separation using karaoke u-net. Available at SSRN
3983514, 2021.

NEWMARCH, J.; NEWMARCH, J. Ffmpeg/libav. Linux sound programming,
Springer, p. 227-234, 2017.

PANTOS, R.; MAY, W. HTTP live streaming. [S.l.], 2017.

PATEL, P. et al. Karaoke generation from songs: recent trends and opportunities. In:
IEEE. 2022 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC). [S.l.], 2022. p. 1238-1246.

https://github.com/guillaumekln/faster-whisper

Chapter 7. Bibliography 56

PRATAP, V. et al. Mls: A large-scale multilingual dataset for speech research. arXiv
preprint arXiv:2012.03411, 2020.

RADFORD, A. et al. Robust speech recognition via large-scale weak supervision. In:
PMLR. International Conference on Machine Learning. [S.l.], 2023. p. 28492-28518.

RAFII, Z. et al. Musdb18-a corpus for music separation. 2017.

ROUARD, S.; MASSA, F.; DEFOSSEZ, A. Hybrid transformers for music source sepa-
ration. In: IEEE. ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). [S.1.], 2023. p. 1-5.

SODAGAR, I. The mpeg-dash standard for multimedia streaming over the internet. IEEE
multimedia, IEEE, v. 18, n. 4, p. 62-67, 2011.

STOTER, F.-R.; LIUTKUS, A.; ITO, N. The 2018 signal separation evaluation campaign.
In: SPRINGER. Latent Variable Analysis and Signal Separation: 14th International
Conference, LVA/ICA 2018, Guildford, UK, July 2-5, 2018, Proceedings 14. [S.|],
2018. p. 293-305.

SUBHASH, V. Using ffmpeg filters. In: Quick Start Guide to FFmpeg: Learn to Use
the Open Source Multimedia-Processing Tool like a Pro. [S.l.]: Springer, 2023. p.
83-117.

TACHIBANA, H. et al. A real-time audio-to-audio karaoke generation system for
monaural recordings based on singing voice suppression and key conversion techniques.
Journal of Information Processing, Information Processing Society of Japan, v. 24,
n. 3, p. 470-482, 2016.

WILLIAMS, R. Culture and materialism. [S.1.]: Verso Books, 2020.

ZHOU, X.; TAROCCO, F. Karaoke: The global phenomenon. [S.|.]: Reaktion Books,
2013.

	A Method for Real-Time Generation of Videoke from Video Streaming
	Resumo
	Table of contents
	Introduction
	Motivation
	Objective
	Justification
	Methodology
	Text Structure

	Theoretical Reference
	Karaoke: A Form of Musical Entertainment
	Audio and Video Processing
	Video Streaming

	Related Works
	A real-time audio-to-audio karaoke generation system for monaural recordings based on singing voice suppression and key conversion techniques
	Karaoke of Dreams: A multi-modal neural-network generated music experience
	Singer separation for karaoke content generation
	Hybrid Y-Net Architecture for Singing Voice Separation
	Discussion of related work

	Proposal
	Audio Track Extration
	Temporal Marking Generation
	Chunk Division
	Vocal Separation
	Subtitle Generation and Synchronization
	Videoke Chunk Generation
	Real-time processing and buffering

	Experiments and Results
	Configuration
	Experimentation
	Results

	Conclusion and future work
	Bibliography

